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Physics Case for the VLBNO Experiment

• All parameters of neutrino oscillations can be measured in one experiment
- every one of the oscillation parameters is important to particle physics 
- the oscillation parameters contribute to important cosmology questions
- a νe appearance experiment is needed to determine all these parameters
- a broadband Super Neutrino Beam at very long distances is key to success
- the Very Long Baseline Neutrino Oscillation (VLBNO) Exp. is the best method

• The massive VLBNO detector empowers additional forefront physics
- a powerful next-generation Nucleon Decay search
- supernova and relic neutrino searches
- a deep underground detector in the prospective NSF DUSEL is ideal for VLBNO

• The CP-violation parameter δCP is the most difficult parameter to 
determine

- matter effects interact with CP-violation effects
- the CP-violation phase δCP has distinct effects over the full 360º range
- antineutrino running gives a complementary way to demonstrate CP-violation

• The off-axis beam method requires multiple distances and detectors
- all experiments will require of order 10 Snomass years of running
- multiple detectors/beams will require careful control of systematic errors



T. Kirk 
May 23, 2005

Questions About the VLBNO Experiment
Won’t HyperK + 4MW J-PARC beam complete all the measurements?

- no, the 295km T2K baseline is too short for the solar term and matter effects
- the off-axis T2K neutrino beam requires at least one other big experiment

to determine δCP without ambiguities; systematic errors are a concern

Isn’t VLBNO much more expensive than other approaches?
- the VLBNO cost is comparable to or lower than other less complete methods
- the VLBNO detector can be made in ~100kTonne steps, phased over time
- VLBNO plans to share the large Nucleon Decay Detector in NSF’s DUSEL

What about the background from π0 inelastic events in VLBNO?
- sophisticated Monte Carlo simulations with state-of-the-art SuperK pattern

recognition and maximum likelihood methods have mitigated this issue

Why not determine CP-violation with antineutrino running?
- antineutrino measurements will require of order 10 Snomass years of running
- each proposed detector needs to achieve good statistics for most parameters

Isn’t the AGS at BNL needed for RHIC and RSVP?
- RHIC runs very compatibly with AGS and RSVP doesn’t use all

the available time (RSVP is planned for 25 weeks/yr for 5 years
- the neutrino oscillation/nucleon decay experiment could be active for decades
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Electron Neutrino Appearance by Oscillation in Vacuum 
The equation for oscillationa of νµ → νe neutrinos in vacuum is given by:

P(νµ → νe ) = sin2(θ23) sin2(2θ13) sin2(∆m2
31 L/4Eν) ‘Term 1’

+ ½ sin(2θ12) sin(2θ13) sin(2θ23) cos(θ13) x
sin(∆m2

21 L/2Eν) x [ sin(δCP) sin2(∆m2
31 L/4Eν) ‘Term 2’

+ cos(δCP) sin(∆m2
31 L/4Eν) cos(∆m2

31 L/4Eν) ]

+ sin2(2θ12) cos2(θ13) cos2(θ23) sin2(∆m2
21 L/4Eν) ‘Term 3’

+ matter effects + smaller terms

∆m2
31 ≡ m2

3 - m2
1 = ∆m2

32 + ∆m2
21 ~ ∆m2

32

What do we learn by contemplating this long algebraic expression?
- simple inspection won’t reveal all the experimental implications
- detailed calculations will clarify all the important experimental issues
- key oscillation parameters still to be measured are shown in red
- the VLBNO method exploits the known oscillation distance scales in green

a W. Marciano, Nuclear Physics B (Proc. Suppl.) 138, (2005) 370-375
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Electron Neutrino Appearance by Oscillation in Vacuum 

νµ −> νe  Vacuum Oscillations - VLBNO
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Electron Neutrino Appearance With Matter Effects 
The oscillation for νµ → νe , including the matter effect, is given approximately 
bya:

P(νµ → νe ) ≅ sin2(θ23) sin2(2θ13) sin2((A-1)∆)/(A-1)2

+ α 8 JCP sin(∆) sin(A∆) sin((1- A)∆) / (A (1- A))
+ α 8 ICP cos(∆) sin(A∆) sin((1- A)∆) / (A(1- A))

+ α2 cos2(θ23) sin2(2θ12) sin2(A∆) / A2

JCP = sin(δCP) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ13) / 8 
ICP = cos(δCP) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ13) / 8
α = ∆m2

21  / ∆m2
31 ;  ∆ = ∆m2

31 L/4Eν ; A = 2VEν / ∆m2
31 ;  ∆m2

31 ≡ m2
3 - m2

1

V = √2GFne ;  ne is density of electrons along the path
This expression separates terms by the the following:

- the first term shows the effect of sin2(2θ13)
- the second and third terms show the effects of CP symmetry
- the JCP term changes sign when calculating anti-neutrinos, νµ → νe
- matter effects come into all terms via the ‘A’ factors in blue

a Barger et al.,Phys. Rev. D63: 113011 (2001); Huber et al., Nucl. Phys. B645, 3 (2002); M. Freund, 
Phys. Rev. D64: 053003 (2001); Barger et al. Phys. Rev. D65: 073023 (2002)



T. Kirk 
May 23, 2005

Sensitivity to Matter Effect 

νµ −> νe

Matter Dependence - VLBNO
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Electron Neutrino Appearance – CP Phase Sensitivity

νµ −> νe 

Oscillations with Matter Effects - VLBNO
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BNL → Rocky Mountains Super Neutrino Beam
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BNL → Rocky Mountains enjoys a 
natural geographical advantage not 

present in other potential world sites

Homestake
2540 km



2540 km

Homestake
BNL
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• neutrino oscillations result from
the factor sin2(∆m32

2 L / 4E)
modulating the ν flux for each
flavor (here νµ disappearance)

• the oscillation period is directly
proportional to distance and 
inversely proportional to energy

• with a very long baseline actual 
oscillations are seen in the
data as a function of energy

• the multiple-node structure of the 
very long baseline allows the 
∆m32

2 to be precisely measured 
by a wavelength rather than an
amplitude (reducing systematic 
errors)

Very Long Baseline Neutrino Experiment



1-2 MW Super Neutrino Beam at AGS
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• BNL completed October 8, 2004, a Conceptual Design to support a
new proposal to DOE to upgrade the AGS to 1-2 MW target power
and construct the wide-band Super Neutrino Beam as listed in the
DOE’s “Facilities for the Future of Science” plan of November 2003



3-D Super Neutrino Beam Perspective

T. Kirk 
May 23, 2005



Νο ∆likelihood cut (100% signal retained)

Background from π0

CP+45
o

Signal 700 ev Bkgs  2005
(1878 from π 0+others)
(  127 from νe)

Signal

νe background
o

CP+45

∆likelihood cut (~50% signal retained)

Effect of cut on ∆ likelihood

Erec Erec

Preliminary Preliminary

Signal/Background

Signal 321 ev Bkgs  169
(112 from π 0+others)
(  57 from νe)

 νe CC for signal ; all νµ,τ,e NC , νe beam 
 for background

Traditional Analysis

Chiaki  Yanagisawa – SBU
February 28, 2005

Maximum  Likelihood Method



Effect of cut on likelihood
CP +45o

Background 
All

oCP-45

Erec

Erec

Preliminary Preliminary

S/B

Erec

Erec

Erec Erec

 νe CC for signal ; all νµ,τ,e NC , νe beam 
 for backgrounds

100% 50%

40%

50%100%

40%

Chiaki  Yanagisawa – SBU
February 28, 2005

Maximum  Likelihood Method



Effect of cut on likelihood
CP +135o

Background 

All

oCP-135

Erec

Erec

Preliminary Preliminary

S/B

Erec

Erec

Erec Erec

100% 100%
50%

50%

40% 40%

 νe CC for signal ; all νµ,τ,e NC , νe beam 
 for backgrounds

Chiaki  Yanagisawa – SBU
February 28, 2005

Maximum  Likelihood Method



T. Kirk 
May 23, 2005

Comparison of Future Neutrino Oscillations Exps. 
Parameter T2K     T2K2        Reactor       Noνa     Noνa2 VLBNO.

∆m32
2 ± 4 % ± 4 %             - ± 2 % ± 2 % ± 1 %

sin2(2θ23) ±1.5 % ± 0.4 % - ± 0.4 % ± 0.2 % ± 0.5 %
sin2(2θ13) a >0.02   >0.01          >0.01       >0.01      >0.01         >0.01
∆m21

2 sin(2θ12) b - - - - - 12 %
sign of (∆m32

2) c - - - possible     yes             yes
measure δCP 

d - ~20° - - ~20° ±13°
N-decay gain x1        x20               - - - x8

Detector (Ktons) 50       1000              20             30        30+50    400      
Beam Power (MW) 0.74       4.0           14000         0.4           2.0              1.5
Baseline (km) 295 e 295 e 1           810 e 810 e >2500

Detector Cost ($M) exists  ~1000        ~20           165        +200            400
Beam Cost ($M) exists      500          exists          50         1000        400
Ops. Cost ($M/10 yrs)  500         700             50           500          600        150/500 f

a detection of νµ → νe , upper limit on or determination of sin2(2θ13)
b detection of νµ → νe appearance, even if sin2(2θ13) = 0; determine θ23 angle ambiguity
c detection of the matter enhancement effect over the entire δCP angle range
d measure the CP-violation phase δCP in the lepton sector; Noνa2 depends on T2K2 
e beam is ‘off-axis’ from 0-degree target direction; f with/without RHIC operations

Both results needed to
resolve ambiguities!

Best Bets
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Conclusions 

• Neutrino Oscillations parameters can be completely determined within
the next two decades

• The most effective method is the VLBNO + Wideband Super Beam

• A Megaton-class Water Cerenkov Detector can do this experiment

• The AGS-based Super Neutrino Beam is the best neutrino source

• Combining VLBNO with the Nucleon Decay search in the NSF DUSEL
is the most science and cost effective plan for the U.S.
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Electron Neutrino Appearance by Oscillation in Vacuum 

νµ −> νe  Vacuum Oscillations - Noνa
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Sensitivity to Matter Effect

νµ −> νe

Matter Dependence - Noνa
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Electron Neutrino Appearance – CP Phase Sensitivity

L = 2540 km

δCP Phase
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Electron Neutrino Appearance by Oscillation in Vacuum 

νµ −> νe  Vacuum Oscillations - T2K Exp.
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Sensitivity to Matter Effect

νµ −> νe

Matter Dependence - T2K Exp.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-2.30 0.00 2.30

Eν (GeV)

T
er

m
s

Approximate Matter Effect

Zero Electron Density

0.1 1.0 10

Eν (GeV)

0.2 0.5 2 5

L = 295 km



T. Kirk 
May 23, 2005

Electron Neutrino Appearance – CP Phase Sensitivity

νµ −> νe 

Oscillations with Matter Effects - T2K Exp.
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